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ABSTRACT
;
’ This report describes algorithms, performance, applications,

and user information associated with two equation-solving codes for
the CRAY-1:
(1) Solution of a single banded matrix equation, unsymmetric
in value but symmetric in structure;
(2) Solution of a single profile matrix equation, unsymmetric
in value and in structure.
Both solvers assume that the matrix is main-memory resident. The
former partitions the matrix internally to achieve high performance.
The latter requires a user-supplied blocking of the LU structure,
an inconvenience compensated by higher performance in solution of
finite difference and a finite element grids.
These codes are available as part of a library of CAL-coded

equation-solvers ,f13]. .

PREFACE
/

The mathematical software described herein is the result of
experimental research on vector algorithms for the direct solution
of 2-D finite difference and finite element grids. The latter code
represents what is thought tobe the best compromise between vector-

izability, sparsity exploitation, and user convenience for such

problems for the CRAY-1.
[

REVISION NOTICE
Pages 18f were revised on August 15, 1982, to include

discussion of blocking algorithms.
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I. Banded and General Sparsity Solution

3 A. Introduction

E Studies of the direct solution of 2-D finite element grids

: have tended to take one of two directions, depending on the nature

of the sparsity.

h 1. Band-related methods. Solvers that recognize sparsity

Q principally outside a band around the diagonal are termed
band-related solvers. This bandwidth may vary - envelope,
skyline, or profile solvers - and may be implicit - as in
frontal methods where a matrix is never fully formed.
These solvers account for an easy majority of direct solu-
tion methods in production codes.

2. General sparsity methods. The early work of George [5]

indicated for the first time the possibility of reduced

operation counts using codes that permit an arbitrary ;

sparsity pattern, termed general sparsity methods. This

spawned a number of research studies on such methods. %

It now appears that general sparsity methods, at least when :
applied to matrices sized to reside in the memory of current pro- |
cessors, are difficult to vectorize [2][6][7]. Rather, only "large-
scale" sparsity patterns can be vectorized to achieve a high perfor-

mance. This conclusion is documented in the following section.
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B. General Sparse Solvers

These solvers accept arbitrary sparsity structure in column-
or row-ordered form and an associated pivot order. After a pre-
processing step to generate the LU £ill structure, multiple numer-
ical solutions may then be performed ([8]. Early studies of vector-
ization of these scalar algorithms sought to maintain the same
input data structure and carry out the same number of floating point
operations as their scalar predecessors [9]. The imposition of
these two constraints was justifiable to establish a performance
standard that may be achieved without alteration of common user data
structures and without introduction of the issue of trading off
floating point computation for higher vector performance. By defin-
ing vectors within dense regions of the LU structure, an average
vector length (%) was defined [6]. It was possible to establish
the vectorizability of the solution of finite element grids exploit-
ing such density [6]. Because % increases monotonically with grid
size, sufficiently large 2-D grids can always be satisfactorily vec-

torized.

C. Block-Oriented Sulvers

Unfortunately, as nxn 2-D grids increase, operation counts in-
crease at least as O(n3) and direct solution methods become less at-
tractive than iterative techniques. However, vector processors have
made the solution of 3-D and time-dependent 2-D problems feasible;

in such cases, repeated direct solution of a moderate-sized 2-D grid

often appears as a computational kernel in a global iterative strategy.§

For such moderate-sized grids, one cannot depend on randomly-produced
density to achieve long vectors.

-2~
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The first concession to vectorization must be to abandon the
traditional general sparsity input data structures. Rather, the
user* must assist in the vectorization process by detecting either
repeated [10] or dense {2] substructures in the matrix.

For the CRAY-1l, vectorized block reduction can be performed
rather efficiently [2]. Such blocks are easily detected at the
local level when many (r) unknowns are associated with each node
and/or a finite element has a large number of associated unknowns [4];
all operations can then be visioned as occurring between rxr full
matrices. The overall execution rate (in MFLOPS) can often be esti-
mated from the rate of the multiply-accumulate kernel that accounts
for the major part of the computation in the reduction of each pivot
block. Since no extra computation is performed in such block-oriented
elimination, the solution time is inversely related to this execution
rate.

A study of the solution time with such solvers on the CRAY-1
shows that only part of the speedup over scalar solvers is due to
vectorization.. A significant advantage also accrues from the need
to address only blocks rather than single elements of the sparse
matrix, since this processor is known to be slow in the indirect ad-

dressing mode (gather/scatter) associated with linked list processing.

D. Band-Oriented Solvers

Even the best coding on the CRAY-1 -acknowledged to have super-
ior short-vector performance - cannot achieve above 20-30 MFLOPS
with fewer than five unknowns/node. To achieve rates in the range of

100 MFLOPS requires the significantly larger dense substructures that

£ 3
Algyorithms to prepare the structure for vectorization could, of
course, be considered.
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are associated with inter-nodal coupling. Such coupling is usually

along a line or adjacent lines (multi-line coupling) that yields a
banded matrix structure. Indeed, the natural (grid-row) ordering
of irregular 2-D grids yields a step banded structure, shown in
Figure 5(b). If one can justify performing somewhat extra computa-
tion in the gaps between such steps, the entire solution can be
performed with a locally-banded solution mode.

It is the conclusion of the experiences to be reported that

such block profile matrix solution offers the best performance com-

promise between bandsolvers that assume an absolutely regular sparsity

structure and general sparse solvers that permit random structures.
The study of such a "large-scale sparsity" methods is the goal of
this research.
Z. Report Summary
To establish a standard for performance comparison it was essent-
ial to first code an efficient bandsolver in assembly language (CAL).
This was a non-trivial task; the memory-hierarchial CRAY-1 architectur
required a partitioned solution process. The first part of this re-
port describes the algorithms, implementation, and performance of
this software. Its speedup over Fortran implementations makes this

useful in its own right.

The block profile solution is then discussed and is liberally
documented with examples to give insight into the class of problems

for which it yields improved performance over the above standard.
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ITI. Solution of a Single Banded Matrix Equation

A. ilemorv-resident Banded Systems

In reference [1l], Jordan has presented an algorithm for solving
a banded set of equations on the CRAY-1l and gave the performance of
associated CAL software. Unfortunately, the 64-~length vector limita-
tion of the CRAY-1l resulted in the code being applicable to matrices
with half-bandwidths b=64. This part of ,the report describes the
design and performance of software that does not have this restriction.

It can be argued that very large banded sets of equations cannot

be solved with the entire matrix resident in main memory, an assump-
tion of the code to be described. Nonetheless, an intermediate range
of matrix sizes beyond the above bandwidth restriction can be stored
in even %-megaword configurations, and yet solved in fractions of a
second. With up to 4-megaword systems in the offing, it is likely
that the majority of banded matrices will be beyond the capability of
Jordan's code.

Because most banded matrices arise from the solution of partial
differential equations, consider the banded matrix produced by apply-
ing the 5-point finite difference formula to the 2D grid of Figure 1,
where

ng is the shorter grid dimension

n, is the longer grid dimension

u is the number of unknowns per grid point

k2=ns/n2 is the ratio of grid dimensions

u unknowns/grid point

. . . . . . . . . k =n /n
L 2/ S

Figure 1. Definition of grid descriptors
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E/QES\; 1 2 E 4 | 8
| 4 126:126 | 159:79 | 109:49  247:30
2 1 100:100 | 127:63 | 155:38 | 199:24
1 79: 79 | 101:50 | 123:30 | 151:18
y | 63: 63 || 79:39 99:24 | 119:14
% 50: 50 | 63:3L || 75:18 | 95:11
% 39: 39 49:24 | 59:14 | 7.8

. : unction of matrix
Table 1 bmax nsmax as a func

storage (megawords) and number of unknowns/
grid point; examples below dashed line have

b1 =64-

The matrix is of order n=un_n,, with a half-bandwidth b= . ~-1.

The matrix storage in compressed form (Figure 2) is

s (2u(ns+l)-l)(unsn2)

(2u(n_+1)-1) (ukgn %) (1)

For ns>>1,

~ 2 3
s = 2kgung (2)
Asymptotically,
1/3

2

S

2k£u

n =
S

and the half-bandwidth is

b = un
s

L7940t (s/x 13 (3)

With b<64, it is clear from (3) that grids with a constant kz will
be more impacted by this restriction as u increases. The precise
nature of this restriction is indicated in Table 1. For example,
Q=2 will
accommodate the matrix only when uzl; yet the associated equations

a one-megaword processor with a grid dimension ratio k
can be solved in only 330 msec at 100 MFLOPS, a representative exe-

cution rate. Even a square 50 x 50 grid with u=4, executing on a

four-megaword system, can be solved in only 8 seconds, and yet

-6~
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generates a half~bandwidth of 203, well beyond the 64~length limita-

Y UASOW S

tion.

In conclusion, it appears that many 2D grids producing matrices

Y

with bandwidths greater than 64 can be solved in reasonable time
with direct methods on present and near-term memory configurations.

The more general program to be described can be expected to extend ;

the usefulness of many application codes that are based on direct

methods to such problems.
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B. Algorithms and Implementation

l. Problem statement and solution

It is desired to solve a banded set of equations
AX =B

where A is an n X n unsymmetric matrix of half-bandwidth m, and is

sufficiently well-conditioned that pivoting is not required.

The solution is performed by partitioned LU factorization of
A in one subroutine (BANFAC) and by partitioned forward and back
substitution in a second subroutine (BANSOL).

2. Storage options

In different applications disciplines, it is customary to store
the matrix in one of two compressed formats. 1In row storage format,
illustrated in Figure 2(b), the diagonals are stored in rows of a
(2m+1) x n array; in column storage format, the diagonals are stored
in columns of a n x (2m+l) array. The voids are assumed to be zero-

valued.

3. inner loop algorithm

The algorithm of Jordan's inner loop code is adopted for this
more general code, although the coding is somewhat different.

Jordan's LU factorization uses the following accumulation for

the jth columns.

(k+1) _ (k) -
Ur+l:s,j - ur+1:s,j uerr+l:s,r (5)
(k+1) _ . (k) _
Lsvr:t,5 = D5+l:t,3 ~ Yrjls+l:e,r (6)
(j=-r)
L, . = . . .
J+1l:t,] LJ+l:t,J/uJJ (7)
where s=min(r+m,j), t=min(r+m,n), r=r0,...,j-l, k=r-r0, r =max(j-m,1l),
d . . L (2, i
an Ua:b,j(La:b,j) represents a vector of components ulj(zlj) with
a<isb.
Since the calculation of Ul ix 3 is completed after the kth
0 ’

step and since the component 45 (or 1ij) is unatffected by the accumu-
lation until ji=r+m, the vector length remains m until r+m>n. After

each kth step, the first vector element u r is removed

. or ¢
rog+k,j rotk,1




by a vector shift and a new final element u or % added

r+m+l,J r+m+1l,j

at the end of vector.

Once removed from the vector, the completed element immediately
becomes a scalar multiplier urj in (5) and (6). This removal pro-
cess creates a delay in Jordan's code, and a subsequent small loss
in asymptotic MFLOP rate. The delay is removed in the new code
by precalculating the first vector element in scalar mode. The

resulting accumulation loop has a timing formula

T2 = 17 + VL VL= 30 (8)

where VL is the vector length; the associated execution rate is 126
MFLOPS for VL=64. For VL<30, the timing is approximately a constant
47 clocks.

4. Partitioning

To extend Jordan's code beyond half-bandwidths of 64 while main-
taining the high execution rates associated with vector accumulation
loops such as the above, the matrix must be partitioned into 64 x 64
blocks, noted by Jordan [1l] for full matrices and Calahan [2] for
block sparse matrices. In [2], the partitioning of banded matrices
was performed into square blocks and "bandedge" blocks, with a de-
gradation in processing the latter. 1In the present code, the parti-
tioning is performed into diagonal blocks, as illustrated in Figure
3. LoopCDis a single vector operation; loop()js the inner loop
of vector operations which terminate after 64 accumulations into the
jth column. 1In loop(@, the next 64 elements of the same 64 columns
are accumulated into the jth column. The scalar pre-calculation
noted above for the inner loop is unnecessary for the blocks non-
adjacent to the diagonal, and a somewhat more efficient accumulation
loop is utilized. Loop(:)continues until the bandedge is encountered.
Loop (4 then advances the accumulation to the next column of 64 blocks,
as shown in Figure 3.

When the bottom of the matrix is encountered in the processing
of a block, one is faced with either testing for this condition in
the inner loop -- and thus adding a fixed inner loop overhead -~ and
then reducing the vector length, or simply carrying out the additional
floating point calculations. It happens that the matrix storage for-

mat permits the latter during factorization, so that this procedure




NN
...........................

11 %12 213

21 222 223 844

31 %32 233 333 435
842 333 244 345

a

53 54 56

a

64 66

Logical storage (m=2,n=6)

0 0 a3y 235 ajj
0 0 213 224 %35 %46 0 421 222 323 3y,
0 312 223 234 %45 %se 831 232 233 334 235
a11 %22 33 244 %5 %66 B42 343 34 B45 344
a7 233 43 254 %5 O 353 354 355 a4 O
a3, @4, @ag3 dgg O 0 364 35 3 O 0

Row storage (5 x 6 array) Column storage (6 x 5 array)

Figure 2. Band matrix storage formats.
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Illustrative partitioned matrix

Figure 3.
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was chosen. The extra block processing is indicated by dashed lines
in Figure 3. For large n/m ratios, the faction of extra computa-
tion is bounded by m/3n. During the substitution steps, the ratio
is bounded by m/2n; also, the right hand side is relocated on

entry and exit, to provide requisite void storage space.
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a C. Performance
[ In comparison with the timing of Jordan's unpartitioned code,
AB the partition-! -~ o-. .. .. ..r: :.zewhat more overhead to implement

- the partition:ng and to allow row- or column-ordered storage. However,

use of a simulator (3] has allouwed a somewhat more careful attention
to inner loop timing (see below). This effort is deemed worthwhile,
since the direct solution of large dense matrix equations inevitably
dominates the equation formulation, with the result that the total
execution time tends to be closely related to the performance of
this inner loop.

Table 2 gives the performance statistics* of the partitioned
versus the unpartitioned code. As indicated, the specialized inner
loop coding more than compensates for the outer loop overhead. Also
the execution rates for even small bandwidths easily exceed those
of scalar processors (in the order of 1-5 MFLOPS).

The effects of partitioning are shown in Figure 4. For band-
widths less than 65, no partitioning is necessary and all vector
lengths are equal to the bandwidth. For 65=m<128, the average
vector length is approximately m/2. A resultant sharp drop in execu-
tion rate occurs for m=65. For 129-m=192, the average length is
2m/3, so that the decrease for m=129 is less severe.

Figure 4 also presents the measured rates of this software versus
the Fortran-coded LINPACK bandsolvers SGBFA and SGBSL available at CRI

(a slower version of these codes on the UCS system in 9/81 was also

tested). Because these codes allow pivoting (which commonly accounts %
for 25-30% of the solution time in CAL for large matrices), this com-

parison is somewhat unfair to these Fortran codes. k

It is perhaps more intuitive to relate the performance directly
to the grid from which banded matrices are normally derived. Table
3 gives the computing times and execution rates for a number of cases
up to the storage limits of a megaword machine. The execution rates
uniformly are in the range of 100 MFLOPS for large problems, ranging
up to the limit 118 MFLOPS for a 64 x 64 grid with one unknown per
grid point.

FPRPOP LR RPN SO Ul WY W]

PRI |

*All performance results in this report are derived from runs on
the megaword CRAY-1 configuration at United Computing Systems, Inc.

Lok,

ad

-13-

-— e e o A a3 ES,




g Co gt e e gre ey - 0 ol a0 o e
AL A . ,

—rr

Py

."T‘l.‘ 1. -~ . ’4

Half Ba

Factori

8
le6
32
64
96

128

Solutio

8
16
32
64
96

128

B
z
ndwidth Time : Rate Improvement
(ms : MFLOPS*)
zation
1.88:18.2 2.1
2.97:43.6 1.9
5.66:86.0 1.7
16.0:110. 1.3
35.9:99.2 -~
54.6:103. -
n
.315:26.4 1.3
.316:51.0 1.3
.358:86.1 1.3
.565:102 1.1
.921:87.1 -
1.14:86.2 --

*Extra computation ignored in operation count (see text)

Table 2.

Timing performance of partitioned code for
256 equations, and comparison with Jordan's
original code [1].

-14-
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EXECUTION RATE (MFLOPS)

120 (64.117) (128, 114)
"30(-
(80,92)

(129,92)

80
(65,76)
60
(16,44)
40 CFT
(64,27)
(129, 31)
20
(32,17)
“’1'3)1 | [ | | | |

o 20 40 60 80 100 120 130
HALF BANDWIDTH

Figure 4, Performance of banded partitioned (CAL) and

LINMPACK (CFT) timings for solving 1024 equations;

Note the LINPACK codes include pivoting.
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‘s )

N : .

8 .457:17.5 1.52:45.4 6.50:89.0 '
16 2.97:43.6 12.3:88.2 115:76.8
20 221:96.7

E 24 51.1:106, 113:107.

[ 28 718:114.

. 32 23.6:88.4 224:76.2

FI 40 445:93.3

; 64 283:118

(a) Factorization (BANFAC)

u
RPN 1 2 4
8 .085:28.1 .162:50.1 .376:89.1
la .315:51.0 .720:91.4 3.49:76.2
20 5.43:95.6
24 2.07:107 8.55:105.
28 12.7:112.
32 1.40:93.0 7.05:74.6
40 11.1:92.7
64 8.84:118.
(b) Solution (BANSOL)
:
F
:. Table 3. Time (msec): execution rate (MFLOPS) as a
T function of square grid size (ng) and

number of unknowns per grid p01nt (a) .

-16-
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D. Software Description

1. Calling sequence

Factorization
CALL BANFAC(N,M,A,NDIAG,NDROW)

Substitution
CALL BANSOL(N,M,A,NDIAG,NDROW,B)

where
N is the number of equations
M is the half-bandwidth, not including diagonal
A is the compressed band matrix array
NDIAG is the diagonal addressing increment
NDROW is the row addressing increment
B is the right hand side and the solution array

2. Explanation
1. NDIAG is the storage addressing increment between logical
matrix positions (i,j) and (i+l,j+1l), i.e. between successive
diagonal elements. For row storage, NDIAG=2*M+1l; for column storage,
NDIAG=1.
2. NDROW is the storage addressing increment between logical

matrix positions (i,j) and (i+l,j), i.e. between successive column

elements. For row storage, NDROW=1l; for column storage, NDROW=-(N-1).

3. Restrictions
1. Storage must be zero-valued beyond active compressed banded
storage (Figure 2).
2. Storage for B must be at least N+2*M.
3. | NDROW! should not be a multiple of 8, to avoid bank

conflicts.

-17~

4
y

worry LTI P SN UIE CI W W oS

ST E RN

ot s

R WA S §

A .-




et s I . P —— R CHMET e S . AN |
L : =
N ]
y-i‘ 5
4 »
> .
;_ ITI. Solution of a Block Profile Matrix Equation

A. Motivation for Profile Solution

Profile matrices tend to arise in two ways.

1. The "natural" column-by-column (or row-by-row) reduction
of nodes in a 2-D grid produces a banded matrix for rec-
tangular grids only. For grids with irreqular external
boundaries, a variable bandwidth (profile) matrix re-

sults.

2. Floating point computation can be approximately halved in
solution of a large grid defined by a 5-point operator,
by first reducing unrelated nodes. This step requires
insignificant computation for large grids; however, it

halves the matrix size and leaves the bandwidth unchanged.

If the unrelated nodes are eliminated along alternate
diagonals (termed AD or D4 ordering [ll]) and then the

f remaining nodes numbered along diagonals, a profile matrix
F! results. The LU factors of such a matrix are illustrated
in Figure 5(b) for the 8x12 grid of Figure 5(a). By ex-

ploiting this profile, floating point operations can be

3

¢

i

E‘ reduced by another factor of 2 for a large sguare grid.

E In the examples of this report, it is assumed that the alter-

E nate diagonals have been eliminated in the first step and only a

{‘ profile matrix remains. On the CRAY-1l, the vectorization of this
first step is highly dependent on the regularity of matrix storage,
since considerable data movement but little computation is involved.

:. With random storage and scalar operations from FORTRAN, a rate less

; than 1 MFLOP may be achieved. With a patterned storage, from CAL

\

q
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a rate of 70 MFLOPS has been observed. In the first case, the
significance of the time associated with this first step can be
ignored only with very large grids.

Storage permitting, the profile matrix could be solved by
the bandsolver previously described. If the profile solver were
to operate at the same execution rate as the bandsolver (an opti-
mistic assumption), then on a square grid the solution time would
be halved. This factor of 2 is therefore an upper limit on speed-
up of profile over banded solution. Note that this is far less
than the 3-5 speedup factor which CAL achieves vis-a-vis CFT (Fig-

ure 4).

B. Block Profile Solution

1. Blocking Rationale

The vectorization of the solution is further assisted by "reg-
ularization" of the matrix structure into two-dimensional blocks,
for two reasons.

(1) Fewer symbolic descriptors relating to block size and
storage locations are necessary to describe a block than
to describe the same matrix elements either individually
or as a collection of l-dimensional dense columns or rows
(as in [9]). The processing of these descriptors can
add significant overhead to numeric processing, especially
when processing small blocks on a vector processor.

(2) The high speed CRAY-1l vector register set has a single
critical data path to main memory. The utilization of

this path can be reduced by performing matrix-matrix or

-19-
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Figure 5(a). AD-ordered 8x12 grid; xx repre-
sents nodes eliminated in pre-reduction step.

Matrix shown in Figure 5(b).
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F%gure 5(b) Blocked profile matrix associated
with 8x12 grid with u = 1; J - zero-valued nosi-
tion inserted for blocking.
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Figure 5(c¢).
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XXXXXXXXXXXXXXXXXXXAXL
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00000000
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tion inserted for blocking.
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(c) Problem #3, 55x72, 2323 equations

Figure 6. Irregular grids
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matrix-vector rather than vector-vector operations.
The identification of matrix (or block) structures is

thus essential to achieving highest execution rates.

2. Blocking Attributes

To gain insight into desirable blocking attributes, two
classes of problems are studied in this report.

(a) The model grid of Figure 1, reduced to a profile matrix

by D4 ordering.

(b) A set of three irregular grids of Figure 6, taken from
[14]. Unrelated nodes are pre-reduced, but in the nat-

ural ordering of the grid rather than along diagonals.

The profile of the resulting matrix is then similar to
the profile of the matrix resulting from natural order-
ing of the entire grid; however, the number of equations
is approximately halved.

The structure of the LU matrix from an AD-ordered model grid
has been shown in Figure 5(b). For the irregular grid of Figure
6(b), a submatrix is shown in Figure 7(a). In both cases, the
natural matrix boundaries occur not in rectangular blocks but in
blocks whose boundaries are parallel to the diagonal. This charact-
eristic is consistent with the partitioning strategy of the band-
solver; this suggests that the accumulation kernels of the latter
may be used in this case.

Unfortunately, these accumulation kernels require that a column
of L be considered dense from the diagonal to the largest row number

(contrast, an inner-product accumulation). As a result, for the ir-
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regular grid of Figure 6(b), the columns of the L factor are
extended to the bandedge, as shown in Figure 7(b). The result-
ing extra computation associated with extra non-zeros will be
evaluated later empirically. Non-zeros need not be added to the
U matrix for this reason.

A second accumulation kernel characteristic is the assumption
that successive columns being accumulated begin and end one row
number apart. This observation sets the primary requirement of
the blocking algorithm for L and U, i.e., the identification of
two-dimensional submatrices, each bounded above and below by diag-
onals parallel to the main diagonal and by columns on each side.

In this blocking process, one can judiciously add non-zeros
to complete blocks, as in Figure 3 near the southeast corner of
the banded matrix. This becomes the critical part of the blocking
algorithm and will be considered in detail later. This addition of
non-zeros in L will suffice for blocking of the factorization and
forward substitution. However, if the back substitution is to pro-
ceed efficiently, blocks in U must also be completed as above.

Matrices blocked in L and U by the algorithm below are illus-
trated in Figures 5(b) and 7 (b) for model and irregular girds, re-

spectively.

3. Blocking Algorithm

An optimal blocking algorithm must have as its goal minimiza-
tion of the factorization (or solution) time by reducing the number
of blocks without adding excessive computation or storage. Develop-

ment of this algorithm would proceed by
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(a)
{b)

(c)

coding the block factorization and solution algorithm,
developing a detailed timing model for each of the
major loops in the code, and

solving for the location of block separators that mini-

mize the execution time.

This problem can be phased as a nonlinear programming problem.

The nonlinearity arises from the possibility of overlap between

scalar and vector operations: scalar computation may hide a con-

current short vector operation, or it may itself be hidden by a long

vector operation. The dependence of computation time on vector length

is therefore a nonlinear one. Even without this dependence, the

arbitrary insertion of block separators is an integer programming

problem and so is beyond reasonable solution time for large profile

systems.

A local - and thus suboptimal - minimization algorithm has been

developed that focuses on the local irregularities of the profile.

It proceeds as follows:

(a)

In blocking L, the search direction proceeds from the
first to the last column; U is blocked from the last to
the first column. The following rules will apply to the

more critical L blocking; similar rules are used to block U.

The lccality of the algoriihm is limited to three successive
columns, numbered Lyr by = ra+l, and r, = rp+tl. If the

associated (half~) bandwidths are Ma’ M and Mc’ then the

b
block is continued in tne search direction if Mb = Ma.
Otherwise, depending ¢ the value ot Mc, elther a new
block is initiated in the column r, or non-zeros are added

to continue the preser block. This three-column 2algorithm
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4.

has the effect of insuring that a block will be at least
two columns wide. The flow-chart for the complete pro-
cess is given in Figure 8.

The local process of (b) is followed by a more global
blocking step where two blocks are merged into a single
blcck if their half-bandwidths differ by less than a

preset value.

Storage

Although storage is considered a secondary issue to processing

speed, storage alternatives deserve consideration before selection

of one for impiementation.

(a)

If repeated solutions are required from the same factor-
ization, then the LU and the matrix (A) storage cannot
overlap. If overlapping is permitted, then the LU stor-
age may be allocated ahead of the matrix storage so that,
even with fills and inserted non-zeros, the LU storage

does not overtake the matrix storage during factorization,

One has the choice of storing columns of each block

contiguously, or of interlacing L and U storage in the

manner of banded matrix storage. When overlapping LU

and the matrix storage is permitted, the choice can
become critical. For example, if the matrix has a
constant profile so that only one block of U and of

L are defined, then contiguous block storage will require
that either the entire L or the entire U block be stored
ahead of the matrix. In this worst case, total storage

will be at least 3/2 of the matrix storage. On the other
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hand, interlacing columns of L and U must be performed

so that each element is directly addressable from a

block base address. This will inevitably leave gaps

in the LU storage not present in A.

In the blocking algorithm to be discussed, the profile matrix

is stored overlapped with A in compressed banded matrix format, i.e.,
the storage location of logical position (i,j) in LU is (i-j +
HBW +1, j), where HBW is the maximum half-bandwidth of L and U.
The above-mentioned wasted storage is simply tolerated. The LU
storage is allocated in array B at compile time by an EQUIVALENCE

statement of the form
EQUIVALENCE (A(l), B(L))

where the minimum value for L is printed by the blocking subroutine.
It is the user's responsibility to ensure that this amount has been
set aside before proceeding with the numerical solution. When the
symbolic blocking and the numeric solution are carried out in dif-

ferent run steps, this is no problem. !

5. 1Input to Blocking Program

Unsymmetric profile solvers conventionally assume that the
data is stored by column or row. Whereas each column (row) is as-
sumed stored compactly, adjacent columns (rows) may not be. To :
allow such non-compact storage, the following data must be supplied ]
by the user. Note that only storage by column is permitted. ;

(1) symbolic: the first and last row number in each column;

IR S W
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(2) numeric: the numeric storage location of the diagonal
elements.
A characteristic often associated with finite difference

grids is the numbering of the nodes without regard for the number

of unknowns (U) per grid point. Correspondingly, it is often con-
venient to input the above profile description assuming U=l and
then have the blocking algorithm expand the description and per-
form the blocking with U as a parameter.

In summary, only the number of equations, the number of un-
knowns per grid point, and the descriptors of (1) and (2) are
required inputs for the blocking algorithm. The specifics of the

software description are contained later in the report.
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C.

Implementation

The following are major considerations in the code development.
(a) The high-performance kernels of the bandsolver are utilized.
Therefore, the performance of the profile solver should

approach that of the bandsolver in the special case of a
large banded matrix.

(b) In the event blocks are larger than the 64x64 partitions
of the bandsolver, the partitioning requirement is imposed
during solution. This imposition of both blocking and
partitioning strategies accounts for significant overhead
in loops above the accumulation kernel. Another source of
overhead arises from the provision for re-formatting the
user-supplied matrix storage to blocked LU form (see (d)
below) .

(c) Non-zeroes inserted into U to speedup the back substitution
are not processed during the factorization. From Figures
5(b) and 7(b), this tends to affect an irregular grid more

than a model grid.

(d) From the timing formula for the accumulation kernel in
Equation (8), it may be argued that extending blocks of 1
L to a length of 30 will not increase the aggregate kernel
timing. Thus, an L block of length 30 can cover all ad-
jacent blocks of len;th 2 30, and the total overhead of

processing block descriptors reduced.
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D. Performance

1. Timing Evaluation

The common algorithmic measure of MFLOP rate is not an authori-
tative measure of timing performance for this software since extra
computation results from adding non-zeros to produce blocks.
Instead, a number of model and irregular grids have been solving
using the CRAY-1l. Recall that for D4 ordering alternate nodes
have been pre-reduced, leaving a profile matrix.

Table 4 gives a timing and storage summary of these runs.
In each case, the bandsolver bandwidth was chosen equal to the
maximum profile bandwidth. The timing ratios TF:TC:l gives the
relative computation times of the Fortran and CAL (respectively)
bandsolvers relative to the profile solver. The relative time

T with a theoretical upper bound of 2 for a model square grid,

c’
is shown to be less than 1 for narrow-band cases, and becomes

1.76 (the largest speedup or profile solution) for large bandwidths.
Indeed, Table 5 illustrates the high correlation between speedup
and half-bandwidth - whether arising from the profile of a D4-
ordered model grid or the natural profile of an irregular grid.

The principal exceptions to this monotone behavior are the
elongated 32x128 model grid -~ for which D4 ordering produces a
small profile variation - and grid #1 of Figure 6(a), which also
has a nearly constant bandwi-lth. In either case, the overhead of
profile solution seems unwarranted.

2. Processor Utilization

For the irregular grids, the floating point computations were

counted before and after blocking. Indeed, three counts were made

(Table 6).

-34-




————

‘ ﬂﬂ*”f 3

b |

I S S R ——" T T — T S

1. Original Count. This is the count of operations if
solution were performed on a scalar processor; this count
corresponds to the LU structure in Figure 7(a).

2. Unblocked. The column-by-column elimination requires
dense columns of L to the bandedge, represented by the x fill
in of L in Figure 7 (b). The resulting total operation count
is termed the unblocked count.

3. Blocked Count. This count includes the 0 fill n
L in Figure 7(b). The factorization count does not include
the 0 £fill in U, but the (back) substitution count does

include this fill.
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Table 6 indicates the largest percentage operation count
increase for factorization due to blocking occurs with grid #2.
This occurs largely because the L blocks are merged into a single
block by the previously-noted strategy of merging all adjacent L
blocks of length less than 30. Most blocks of grids #3 are well be-

low the limit.

| I R

Of perhaps more significance is the effective MFLOP rate.

This rate is obtained by dividing the number of original operations

(see above) by the solution time; it therefore discounts the opera-

+——r

tions due to non-zeros resulting from blocking and allows an intuit-

A Al
]

ive comparison with other vector and with scalar processors. Lui5 rate
is shown to be over 80 MFLOPS. 1In contrast, the bandsolver rate is
approximately 110 MFLOPS for a half-bandwidth of 55 (see Table 4).

L AN G S S AR AR

\Am aar

} HBW Speedup Grid u '
7 .7 #1(8x69) 1 ;
16 .78 16x16 1 ;
28 .95 #2(23x37) 1 . |
32 1.02 32x32 1 R
34 .88 32x128 1 ‘
39 1.01 #1(8x69) 5
55 1.32 #3(55x72) 1 1
64 1.41 64x64 1 i
71 1.45 #1(8x69) 9
86 1.60 $2(23x37) 3
98 1.52 32x32 3 1
144 1.76 $2(23x37) 5

*Maximum half bandwidth

Table 5. GSpeedup of profile over banded
solution as function of half bandwidth.
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NEQ

391
Fac.
Sol.

507
Fac.
Sol.

2323
Fac.
Sol.

Table 6.

Original

15,259

4,802

191,917
19,805

3,754,265
180,846

NEQ

391

Fac.
Sol.

507

Fac.
Sol.

2323

Fac.
Sol.

Table 7.

Unblocked

15,469

4,838

224,853
21,429

3,982,156
187,008

Effective

7.99

17.7

34.1
38.2

75.8
81.8

-38-

Blocked

17,691

5,322

281,517
27,599

4,093,469
199,190

Floating point operations in solution
of irregular grids.

u=1.

Actual

9.25
19.6

50.1
53.2

82.7
90.1

Effective and actual MrLOP rates
in solutipn of irregular grids.




s

Tr;v‘- -

- p———rrrY
A~ AT

P —

Software Description and Calling Conventions

1. LU factorization

Call PROFAC (A, N, ICCL, IBL, NBL, IW)
where

A is the matrix array storage

N is the number of equations

ICOL (3*I-2)* is the location in A of the Ith
diagonal (pivot position)

ICOL (3*I-1)* is the first (smallest) row number
in the Ith column

ICOL (3*I)* is the last (largest) row number in the
Ith column

IBL (4*J-3) is the first column number in the Jth
block

IBL (4*J-2) is the storage relative to A(l), of
the (1,1) position of the Jth block

IBL (4*J-1) is the number of rows in the Jth block
(always positive)

IBL (4*J) is the storage increment between the (K,L)
and the (K, L+1) positions of the block

NBL is the total number of L and U blocks

IW (I) is the L block number that includes the Ith

column
2. Solution (Forward and Backward substitution)

CALL PROSOL (A, N, Y, ICOL, IBL, MOV)
where

Y*contains the right hand side on entry and the
solution on exit; it must be dimen-
sioned at least N + GNl + 6N2

MOV*is SNl

le is 1 - (most negative row number in the blocked
U matrix)

SN, is (most positive row number in the blocked L

2
matrix) - N

*Tnput data to subroutine

-39~
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3. Blocking algorithm 1
CALL BlOCK (IBL, ICOL, IW, N, M, NPB, MOV, IDSTOR, NBL)

IBL, ICOL*, IW, N*, MOV, NBL are defined in calls
to PROFAC and PROSOL

M is the maximum half-bandwidth
NPB* is the number of unknowns per grid point
ZSTOR is the storage used by the matrix A. (M and
IDSTOR are used by FORM to formulate example
equations, but in general are unnecessary
to communicate with PROFAC and PROSOL.)

*Input data to subroutine
P

-40-




F. Example Problems

1. Without Automatic Blocking

A driver program for PROFAC and PROSOL is given in Table
8(a). The symbolic arrays ICOL and IBL need be formed only once;
the array IW and the displacement MOV may be formed from these
two arrays as shown in the program.

Input data for the profile matrix associated with the D4

ordering of an 8x12 grid (see Figure 5) is given in Table 8(b)-(c).

The output array Y(J) has the solution Y(J) = J for the values
given.

2. With Automatic Blocking

A driver program (included on the tape with the CAL-coded
solver) is listed in Appendix A. For symbolic description, the
user may input either (a) ICOL (3*J) and ICOL (3*J-1) or (b) the
conventional column-ordered sparse descriptors of L and U,
assuming that all columns are dense from the first to the last
row number. Numeric storage for the matrix is formed in packed
column-ordered format; storage for L and U is in conventional

column-ordered banded format, using the maximum half-bandwidth.

-4]1-
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PROFILE SOLVER DRIVER

DIMENSION IBL(200),ICOL(300),IW(100)
DIMENSION A(1000),B(2000),¥(100)
EQUIVALENCE (A(1),B(1000))

L Y

C*##  READ SYMBOLIC DATA ]
READ(S,1)N,NBL,NA
N3=3#N
READ(5,1) (ICOL(J),J=21,N3) r
NBLU=4#NBL
C¥#*  THE LU FACTORS ARE STORED BEGINNING IN NEGATIVE STORAGE
c LOCATIONS OF MATRIX A STORAGE; THESE ARE INDICATED BY
c NEGATIVE NUMBERS IN IBL(4#%J-3)
READ(S5,1)(IBL(J),J=1,NBLY)
1 FORMAT(10I5)
NB=1
DO 3 J=1,N
IF(IBL(4#NB=3).EQ.J)NB=NB+1
3 IW(J)=NB=1
MOV=0
DO 4 J=1,NBL
4 MOV=MAXO(MOV,IABS(IBL(4%J-1)))
C*#*  READ NUMERIC DATA
READ(5,2)(A(J),J=1,NA)
READ(5,2)(Y(J),d=1,N)
2 FORMAT(10F5,0)
CALL PROFAC(A,N,ICOL,IBL,NBL,IW)
CALL PROSOL(A,N,Y,ICOL,IBL,MOV)
WRITE(6,5)(Y(J),J=1,N)
S FORMAT(SE12.4)
STOP
END
= (a) Driver program
p
b
p
3
\ 48 16 732
1 1 5 7 1 6 14 1 9 24
! 110 35 t 11 a6 2 12 57 3
. 15 71 3 16 8 3 17 101 4 18
t. 116 5 19 131 6 20 146 7 23 164
7 24 183 7 25 202 8 26 221 9
{ 27 240 10 28 259 11 28 277 12 28
_ 294 13 31 314 13 32 335 13 33 356
{ w34 377 15 35 398 16 36 419 17
e 36 439 18 36 456 21 37 474 21 38
{ 493 21 39 512 22 40 531 23 41 550
{ 24 42 569 25 42 587 26 42 602 29
43 617 30 44 632 31 45 647 32 46
1 662 33 46 676 34 46 687 37 4T 698
¢ 38 48 709 39 48 T19 40 48 726 43
J 48 732 4y 48
1 =306 4 21 3 =264 6 21 7 =180
3 8 21 13 =54 i0 21 28 261 8 21
36 429 6 21 42 555 4 21 ug 681
0 21 43 680 5 =21 46 638 7 =21
42 554 9 =21 36 428 11 -21 21 113
9 =21 13 =55 7 .21 7 -181 5 =21
. 1 -307 1 =21
I
(b) Symbolic input data
¢ Table 8. Sample driver program and input data
b
-42~
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-1,
-1.
-1,
-1.
-1.
-1.

-1,
-1.
-1,
-1.
-1.
-1.
-1.
-1,
-1.

-1.
-1.
-1.
-1.
-1,

20.
-1.
-1,
-1.
-1.
20.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1,
-1.
-1.
-1,

-1,
-1,
-1,
-1

20,

-1.
-1.
-1,
20.

-1.

-1.
20.
-1,
=1,
-1.

20.

-1,
-1,
-1,
~1.
-1,
~1.
~1.
1.
1.
-1,
~1.
~1.
~1.
~1.

-1.
-1.
-1.
-1.
-1.
=-1.

20.
-1,
-1,
=1,
-1,
=1,

-1.
-1.
-1,
=-1.
-1.
-1,
-1.
=-1.
-1,
-1.
-1.

-1.
-1,
-1.

-1.
=-1.
=-1.
=-1.
-1,
-1
-1.

-1.
-1.
-1,
-1.
-1.
-1.
-1.
-1.
-1.
-1.

-1,
-1,
-1.
-1.
-1,

20,
-1,
-1,
20.
-1,
-1,

=1.
-1.

=1,
-1.
=-1.
-1,
-1
=-1.
-1,
-1,
-1.

-1
-1.
-1.
=-1.
-1,
=1.
=1.
-1,
=-1.
-1

-1,
20.
-1,
-1,
20.
=1,
-1,
20.
-1
-1,
-1,
-1,
=1,
-1,
-1,
-1,

-1.
-1.
-1.
-1
-1.
-1.
-1.
20.
-1,
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1,
-1.
-1.
-1.
-1,
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1,
-1.
-1.
-1,
-1.
-1.
-1.
20.
-1.
-1.
-1.
-1.
-1,
-1.
-1.
-1.
-1.
-1,
-1,
-1.
1.
-1.
-1,
-1,
-1,
-1.

-1,
-1.
-1,
-1,
=-1.
-1.
-1,
-1,
-1,
-1,
-1,
20.
-1,
-1.
-1.
=-1.
-1,
-1.
-1,
-1.
=-1.
-1.
-1.
=-1.
=-1.
=-1.
~1.
20.
-1,
20.
=-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1,
-1,
=-1.
-1.
-1,
20,
=1,
-1,
-1,
=-1.
-1,
-1.
-1,
-1.
-1.
-1.
-1,
-1.
-1,
20.
20.
-1,

-1,
-1,
-1.
-1,
-1,
-1,
-1.
-1,
-1,
-1.
-1,
-1.
-1,
-1.
-1,
-1.
~1.
-1,
-1,
-1,
-1.
1.
-1.
20.
-1,
-1,
-1.
-1.
-1,
-1,
-1,
-1,
-1.
-1.
-1.
~1.
~1.
-1,
«1.
-1.
-1.
-1,
-1,
~1.
-1.
“1.
“1.
-1.
-1,
-1,
-1.
-1.
-1.
20.
-1,
-1,
-1.

-1,
-1
-1
=-1.
-1.
-1,
-1,
-1.
=1.
-1,
20.
-1,
-1,
=1,
-1,
-1.
-1.
=1.
-1,
-1,
20.
-1.
-1.
-1,
-1.
-1.
-1,
-1,
-1.
-1.
=-1.
-1.
-1.
-1,
-1.
-1.
-1,
-1,
=1,
-1,
-1,
20,
-1,
-1.
20.
-1,
~-1.
20.
-1,
=-1.
-1,
20.
-1.
-1,
-1.
-1.

20.
-1,
-1,
-1,
=1.
-1,
-1,
-1.
-1,
-1.
-1.
-1.
-1.
-1,
-1.
-1.
-1.
-1.
=1,
-1.
-1,
20.
-1,
-1.
=-1.
-1,
-1.
-1.
-1.
-1.
=-1.
20.
-1.
=-1.
-1.
-1.
-1.
-1,
-1.
-1,
-1.
-1,
-1.
=1,
-1.
-1,
-1,
-1,
-1.
=1,
=1,
-1.
=-1.
20.
-1,
-1,
-1.
-1,
20.

-1.
-1.
-1.
-1.
-1,
-1,
-1.
-1,
-1,
-1.
-1,
-1,
~1.
-1.
-1.
-1.
-1.
-1,
-1.
20.
-1.
-1.
-1,
-1
-1.
-1,
-1.
-1,
-1,
-1.
-1.
-1.
-
-1.
-1.
-1.
-1,
-1.
-1,
-1.
-1.
-1,
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1,
-1.

=-1.
=-1.
-1,
-1,
-1.
-1,
-1,
-1,
-1,
-1.
-1,
=1.
=1,
20.
=1
20.
-1,
-1,
-1.
-1,
-1,
-1,
-1.
-1.
-1,
-1.
-1,
=-1.
-1.
-1,
-1,
20.
-1.
-1.
-1.
-1.
-1.
-1,
-1.
-1.
-1.
=-1.
-1
-1.
-1,
-1.
=-1.
-1.
=1.
-1.
-1.
-1,
-1,
-1.
-1,
-1,
-1,

20,

-1.
-1
-1,
-1,
20.
-1,
-1,
-1.
-1.
-1.
-1,
-1,
-1,
-1.
-1.
-1.
-1.
-1.
-1,
-1.
-1.
-1.
-1,
-1.
-1
-1,
-1,
-1.
-1,
-1.
-1.
-1.
-1.
-1,
-1.
20.
-1.
-1.
-1,
-1,
-1
-1.
-1.
-1.
-1,
-1,
-1.
-1,
-1,
-1.
-1
-1
-1.
-1,
-1,
-1,
-1,
-1,
-1,

-1.
-1,
=1,
-1,
20.
-1,
-1,
-1.
-1,
-1.
~-1.
-1,
-1,
-1.
=-1.
=-1.
-1,
-1,
=1,
-1,
-1,
-1.
-1.
-1.
-1,
-1.
-1,
-1.
-1,
=-1.
-1.
-1
=-1.
-1,
20.
-1.
-1,
=1,
-1,
-1.
=-1.
-1,
-1.
20.
-1,
-1.
20.
-1.
-1.
20.
=1,
-1,
-1.
=-1.
-1,
-1.
20.
21.

-1.

20.
-1,
-1,
-1,
-1,
=-1.
-1.
-1,
-1,
-1,
-1.
-1.
-1,
-1.
-1,
-1,
-1.
-1,
-1.
-1,
-1,
=-1.
-1,
-1,
-1.
-1.
-1.
-1.
-1,
-1.
-1.
20,
-1,
-1,
=-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1,
-1.
-1.
-1.
-1,
=-1.
=-1.
-1.
-1.
-1.
-1.

..:.. . - :
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4s.
80.
99.
255,

39.
48,
116.
249.

. v e
w - nm
Mo s

o
o s o .
© e~ b~
Mne—mnom

N
Ve e e
OO
T b~

—
« e e
e Oy
M o

6. 18. 29.
57. 18. 15.
12. -0. -0.
83. 8. 87.

51.

81.
308. 362. 441, 451, 510. 570, 714, 778.

23.

Numeric input data

(b)

Continued

Table 8.
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